Lower Bounds for the Exponential Domination Number of $C_m \times C_n$

Chassidy Bozeman, Joshua Carlson, Michael Dairyko, Derek Young*, and Michael Young, Iowa State University

This talk will discuss the exponential domination number, denoted by $\gamma_e(G)$, for the graph $G = C_m \times C_n$. In the paper, On Exponential Domination of $C_m \times C_n$, Anderson et. al. proved that $\frac{mn}{15.875}$ is a lower bound for $\gamma_e(C_m \times C_n)$. We use a linear programming to sharpen the lower bound to $\frac{mn}{13.7619+\epsilon}$.

Keywords: exponential domination, domination, grid, linear programming, mixed integer programming