On Edge-Balance Index Sets of L-Product of Cycles and Stars Connected by Leaves

Jason Dimmick, Sarah Finnigan, Hsin-Hao Su and Heiko Todt*, Stonehill College.

Let G be a simple graph with vertex set V(G) and edge set E(G), and let $\mathbb{Z}_2 = \{0, 1\}$. Any edge labeling f induces a partial vertex labeling $f^+: V(G) \to \mathbb{Z}_2$ assigning 0 or 1 to $f^+(v)$, v being an element of V(G), depending on whether there are more 0-edges or 1-edges incident with v, and no label is given to $f^+(v)$ otherwise. For each $i \in \mathbb{Z}_2$, let $v_f(i) = |\{v \in V(G): f^+(v) = i\}|$ and let $e_f(i) = |\{e \in E(G): f(e) = i\}|$. An edge-labeling f of G is said to be edge-friendly if $\{|e_f(0) - e_f(1)| \le 1$. The edge-balance index set of the graph G is defined as $\mathrm{EBI}(G) = \{|v_f(0) - v_f(1)|: f$ is edge-friendly.\(\}\). In this paper, exact values of the weighted distance-two edge-balance index sets of stars and cycles and stars, $C_n \times_L (\mathrm{St}(m), l)$, where l is a vertex at the end of a leaf on a star graph are presented.

Keywords: vertex labeling, edge labeling, friendly labeling, cordiality, edge-balance index set, L-product, cycles, stars