Rainbow Connection Number Two and Clique Number

Arnfried Kemnitz*, Philipp Krause, Techn. Univ. Braunschweig, Germany; Ingo Schiermeyer, Techn. Univ. Bergakademie Freiberg, Germany

An edge-colored connected graph G is called rainbow connected if each two vertices are connected by a path whose edges have different colors. Note that the edge coloring need not be proper. If such a coloring uses k colors then G is called k-rainbow connected. The rainbow connection number of G, denoted by $rc(G)$, is the minimum k such that G is k-rainbow connected.

Some obvious properties of the rainbow connection number of connected graphs G of order n and diameter $diam(G)$ are
1. $1 \leq rc(G) \leq n - 1$,
2. $rc(G) \geq diam(G)$,
3. $rc(G) = 1$ if and only if G is complete,
4. $rc(G) = n - 1$ if and only if G is a tree.

In general, it is not an easy task to determine the rainbow connection number of a given graph. In fact, it is already NP-complete to decide whether $rc(G) = 2$.

In this talk we determine all graphs G with rainbow connection number $rc(G) = 2$ and clique number $n - 4 \leq \omega(G) \leq n - 1$.

Keywords: edge coloring; rainbow connection; clique number