Spectrum of the Szlam Numbers of the Plane

Peter Johnson, Christopher Krizan*, Auburn University

Suppose that the plane \mathbb{R}^2 is equipped with a translation invariant distance function ρ and suppose that $d > 0$. The distance graph $G_\rho(\mathbb{R}^2, d)$ is the graph with vertex set \mathbb{R}^2 with $u, v \in \mathbb{R}^2$ adjacent if and only if $\rho(u, v) = d$. A rather red coloring of G is a coloring of \mathbb{R}^2 with red and blue such that no two points adjacent in G are both blue. The Szlam number of G is the minimum cardinality, over all rather red colorings of G, of $X \subseteq \mathbb{R}^2$ such that no translate of X is all red. Fixing $d = 1$, we exploit results of Johnson, Szlam, and Kloeckner to show that for every positive integer n there exists ρ such that the Szlam number of $G_\rho(\mathbb{R}^2, 1)$ is n.

Keywords: Distance Graphs, Euclidean Coloring Problem, Szlam Number