Decycling Toeplitz Graphs, Some Subgraphs, and Generalized Petersen Graphs
Peter Dragnev, Chip Vandell*, Matt Walsh,
Indiana University - Purdue University Fort Wayne

Let S be a subset of $\{1, 2, 3, \ldots, n\}$, the Toeplitz graph T^S_n, has vertex set $V = \mathbb{Z}_n$, and two vertices i and j are adjacent when $|i - j \pmod{n}|$ is in S. A special type of Toeplitz graph is the Circulant graph. Given a positive integer n, and a set S which is a subset of $\{1, 2, 3, \ldots, \lfloor n/2 \rfloor \}$ the circulant graph C^S_n is the graph with vertex set $V = \mathbb{Z}_n$ and ij is in the edge set if either $(i - j) \pmod{n}$ or $(j - i) \pmod{n}$ is in S. For $n \geq 3$ and $1 \leq k \leq \lfloor \frac{n-1}{2} \rfloor$, the Generalized Petersen graph $GP_{n,k}$ consists of an outer cycle C_n on the vertices $\{v_0, v_1, \ldots, v_{n-1}\}$ and an inner circulant graph C^S_n on the vertices $\{v^*_0, v^*_1, \ldots, v^*_{n-1}\}$, with corresponding pairs of vertices $(v^*_j \& v_j)$ adjacent. In this talk we will look at the decycling number (the minimum number of vertices which must be removed to render the remaining graph acyclic) of these graphs and some of their subgraphs.

Keywords: decycling, circulant graphs, generalized Petersen graphs