Trees for Given Values of the Span, Caps and Icaps for $L(2,1)$-Colorings

V. Coufal2, K. Fogel1, A. Higgins3, W. Higgins4, R. Ray2, J. Villalpando* 1, K. Yerion2

1 California Lutheran University, 2 Gonzaga University, 3 University of Dayton, 4 Wittenberg University

An $L(2,1)$-coloring of a graph is a labeling of the vertices using non-negative integers such that adjacent vertices differ in label by at least 2 and distance two vertices differ in label. The span of an $L(2,1)$-coloring is the smallest integer λ for a given graph such that there exists an $L(2,1)$-coloring of the graph using only non-negative integers less than or equal to λ. The invariant caps, denoted $\overline{\kappa}$, is the least number of color classes required to create an $L(2,1)$-coloring on a given graph. An $L(2,1)$-coloring of a graph is irreducible if reducing the label on any vertex violates an $L(2,1)$-coloring condition. The invariant icaps, denoted κ, is the least number of color classes required to create an irreducible $L(2,1)$-coloring on a given graph. For any tree T it is known that $\Delta + 1 \leq \overline{\kappa} \leq \kappa \leq \lambda + 1$ and $\lambda \in \{\Delta + 1, \Delta + 2\}$ where Δ is the maximum degree of the tree. Thus, there are only three possible values for $\overline{\kappa}$ and κ: $\Delta + 1, \Delta + 2, \Delta + 3$. We prove that $\overline{\kappa} = \Delta + 1$ for all trees. Then for each of the two possible values of λ, we consider the three possible values of κ, determine if there exists a tree with the two specified values of λ and κ, and provide a family of such trees if any exist.

Keywords: $L(2,1)$-coloring, irreducible $L(2,1)$-coloring, caps, icaps, span