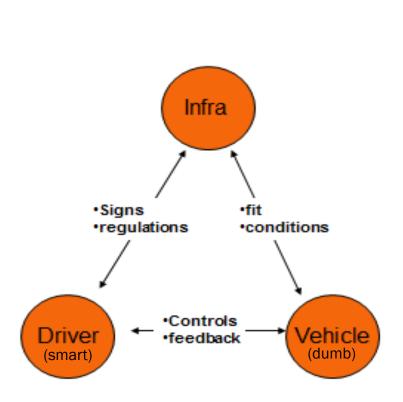
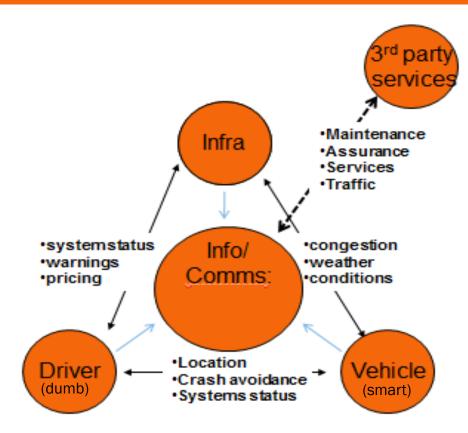
Automation in Transportation

Connected Vehicles

"The future has already arrived; It's just not evenly distributed"

This Presentation


- Which: Deconfuse terminology -Connected Vehicles (CV) context
- Mow: Systems and technology
- Mhat: Functions/Services public and commercial
- Mho: Key players in value creation
- When: Timing
- Planning Response: State/metro/local



Adding Intelligence

20th C -- Loose Fit

21st C -- Integration

Who Does What?

"Intelligent Transportation Systems" (exists)

- Based on embedded systems deployed by state/local DOTS
 - sensors/cameras/fiber optics
 - dynamic message signs/ramp meters

"Autonomous Vehicles" (in early phases)

 Self-contained: rolled out incrementally in new vehicles – brand by brand

"Connected Vehicles: – on-board and roadside equipment (

- Commercial via cellular exists today and incremental
- Public interest via special hi-speed comms. awaits gov't mandate or voluntary automaker agreement

Steve Lockwood, ILC

What is "Connected"

For public purposes

- ✓ V2I ("Infrastructure") Connects to traffic management centers
- ✓ V2D ("Device") -- Connects to traffic signals and signs
- √ V2V -- Extends autonomous vehicle "vision" beyond line of sight for safety

For commercial purposes

✓ V2C ("cloud") -- Connects to Internet, OEMs and other service providers

Synergistic Functions

· Freeway Operations V21 · Signal controls Automated Warnings • Incident Management Signal preemption Road Weather Info Automated transit · Ramp metering Eco-driving · Work zone mngmnt Asset/fleet mngmnt · Message signs VOV Automated Warnings ITS Intersection assist · Smart lane markings Signal preemption Smart signs (Public) Eco-driving V2C CV · Active safety systems AV Navigation Adaptive cruise control (Private) (PPP) · Parking assist Road Conditions · Self-driving Travelers assurances Infotainment Car hailing/sharing Cooperative Driving Cruise Control Internet of Things Truck Platooning

Current Connectedness - Levels/Types

Low speed communication

✓ Satellite for crash response --anywhere

✓ Cellular –mobile (Bluetooth) or embedded ✓

√ Commercial sponsorship

Migh speed communications

- Dedicated radio system Short range/instantaneous
- ✓ For crash avoidance/cruise control
- ✓ Public program
- √ (Note: high speed cellular in development)

Traveler

Centers

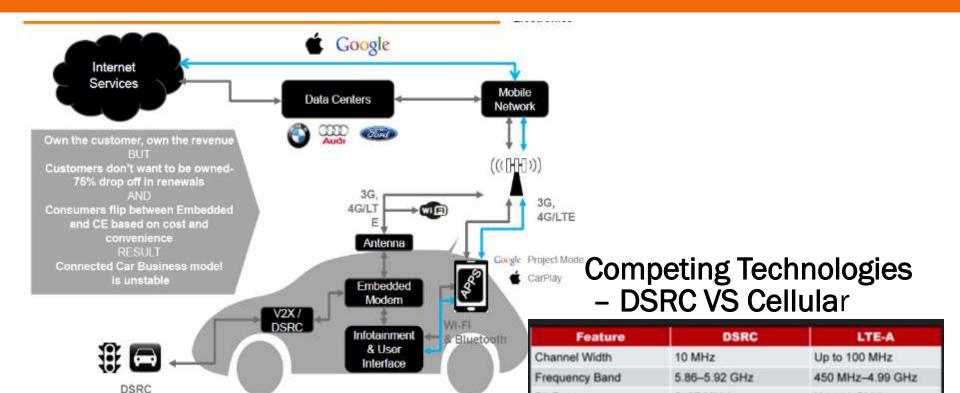
Intelligent Transport System

Vehicles

Commercia

Vehicles

WI-FI


GSM

Infrastructure

Passenger

Vehicles

Connected Vehicle (CV) Systems

https://smallcells.3g4g.co.uk/2014/05/small-cells-for-connected-car.html

Market Penetration

Mobility Support

Bit Rate

Range

Capacity

Coverage

3-27 Mbit/s

Up to 1 km

Intermittent

Medium

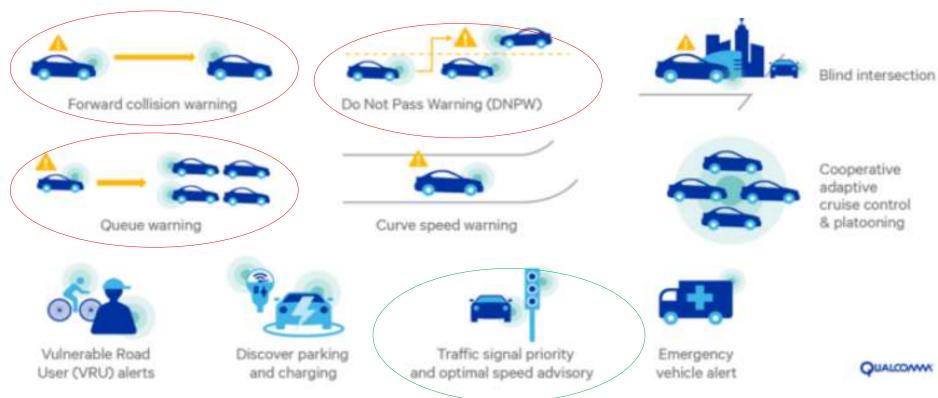
Medium

Low

Potentially High

Up to 1 Gbit/s

Up to 30 km


Very High

Ubiquitous

Very High

Public Interest Applications (1, 2): CV Contributions to Safety & Mobility

V2D (today) - V2I and V2V (Future)

https://enterpriseiotinsights.com/20170614/internet-of-things/20170613internet-of-thingsv2xtechnology-gaining-traction-smart-mobility-tag23

Public Interest Applications (3): CV Contributions to DOT Efficiency

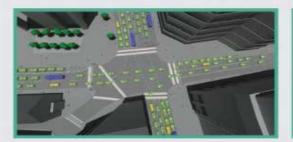
V2I -Today and Future

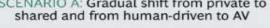
- CV-based travel/traffic data
- Plow truck operations
- Tolling/road pricing
- Pavement condition data
- Elimination of selected signage, markings

Public Interest Applications (4): Connected Transit

CAR OWNING				MOBILITY AS A SERVICE							
BUY	LEASE	CAR-SHARING RIDE- HAILING RESPONSIVE									PUBLIC TRANSPORT
		SHARED OWNING	SUBSCRIPTION BASED OWNING	STATION BASED CAR- SHARING		RENTAL	FREE FLOATING CAR- SHARING	RIDE- SHARING		TRANSIT	
					PEER TO PEER						
		Audi Unite	Volvo	Sixt	Drivy	Omni	Drive Now	Bla Bla Car	Gett	Moia	

accenture





Impact on Transit?

BOSTON TODAY

Primary transport mode	% of trips
Public transit	56
Traditional personal vehicle	33
• Traditional taxi and ride hailing	11

ps
0
2
1
1
6

SCENARIO A: Gradual shift from private to SCENARIO B: Disruptive shift from private and human-driven to shared and AV

Primary transport mode	% of trips	
Public transit	34	
Autonomous shuttle bus	28	
Autonomous taxi	24	
 Shared autonomous taxi 	14	

Public transit

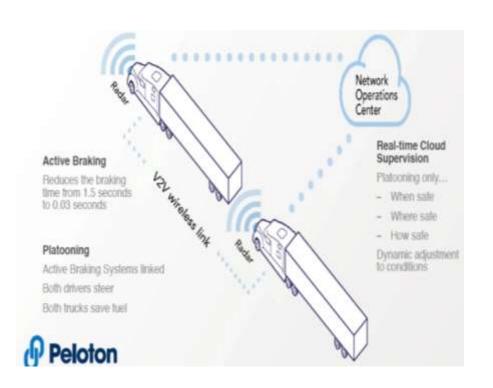
Traditional personal vehicle

Autonomous taxi (shared or single passenger)

Traditional taxi and ride hailing

Autonomous personal vehicle

Autonomous shuttle bus


Sources: World Economic Forum; BCG analysis.

¹This mix of transportation modes is representative of the study area only. Most trips into and out of the study area are work commutes. The model assumes a simplified modal mix without walking and cycling.

Commercial Freight Applications (1) Connected Trucking: V2V and V2I

Connected Contribution to Improved trucking

- ✓ Links braking to allow drafting spacing
- ✓ Connects with Operations Center
- ✓ Remote diagnostics
- ✓ Potential roadside connections

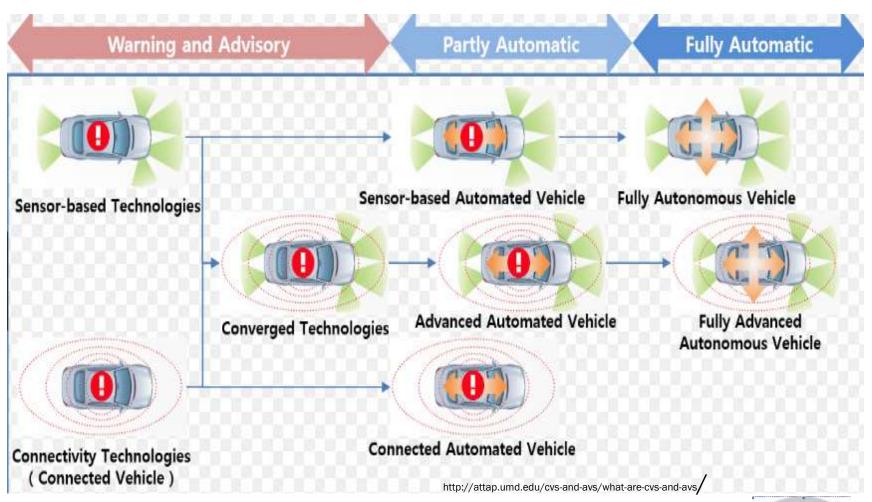
https://favsummit.com/pdfs/richard-bishop.pdf

Commercial Freight Applications (2): Connected Port Activities

Commercial Freight Applications (3): Connected Vehicles and Logistics

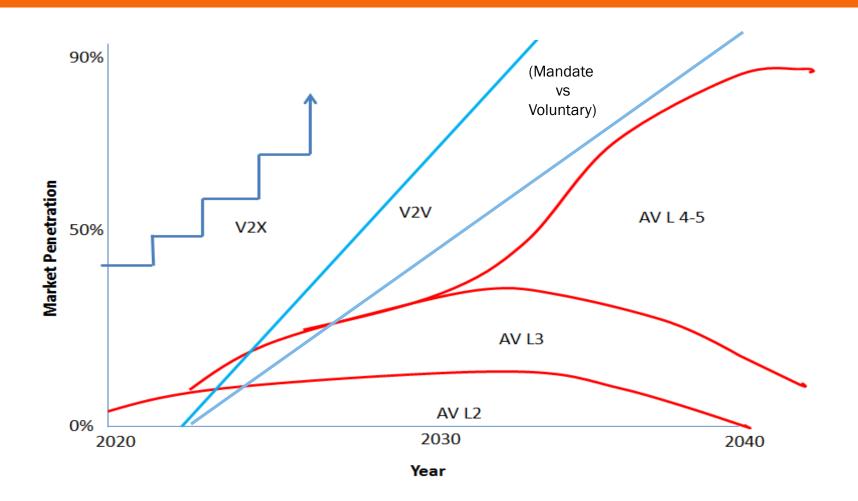
Connected Vehicle Context

CV Payoffs/Veh/Yr


Internet of Cars: Unlocking \$1,400 in Benefits per Vehicle, per Year Internet of Cars Vehicle User Service Providers Lower insurance Traffic guidance, navigation. Lower operation cost emergency services S 550 . Less time stuck in Google on wheels traffic, more productivity \$160 PAYD insurance: location-based services Auto OEM/OES Society \$300 Lower service/warranty costs Fewer crashes \$420 New profit pools Lower traffic/road/toll operation costs Architectural savings CO² reduction Benefits per vehicle, per year

Source: Gisco IBSG Automotive and Economics Practices, 2011

AV/CV Convergence Incremental



CV and AV Timing?

Connected Vehicles Ecosystem

ROLE OF PUBLIC SECTOR

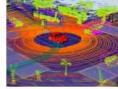
- Regulate
- Cooperat e
- Accelerate

https://www.automotiveworld.com/analysis/manufacturing-gets-connected-smart/

Planing for Connected Vehicles

Connected Vehicles

Vehicle Automation


Internet of Things

Machine Learning

Big Data

Sharing Economy

Connected-Automated Vehicles

Benefits

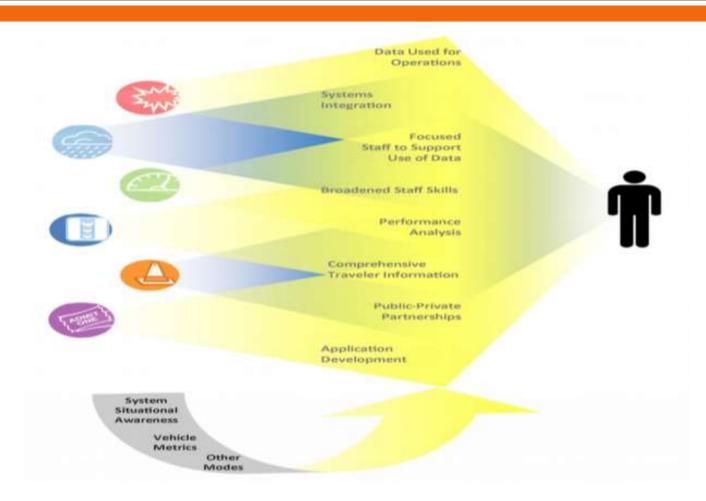
- Order of magnitude safety improvements
- Reduced congestion
- Reduced emissions and use of fossil fuels
- Improved access to jobs and services
- Reduced transportation costs for gov't and users
- Improved accessibility and mobility

U.S. Department of Transportation 3

Proposed Applications

- Dynamic Transit Operations
- Connection Protection
- Dynamic Ridesharing
- Integrated Multi-Modal Electronic Payment
- Transit Signal Priority

- Transit Stop Pedestrian Warnings
- Pedestrian in Signalized Crosswalk Warnings
- Vehicle Turning Right in Front of Bus Warning
- Forward Collision Warning
- Emergency Brake Light Warning
- Eco-Approach and Departure



What CV Brings/Needs

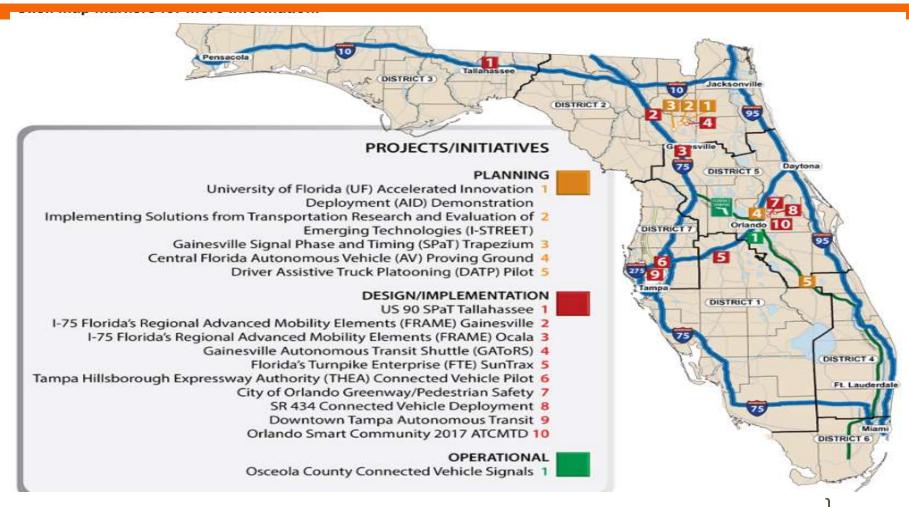
 $http://www.cts.virginia.edu/wp-content/uploads/2014/05/Task3._Future_TMC_12232013_-_FINAL.pdf$

Planning for Connected Vehicles - State

Transformational – Not trends extended

- ✓ Shift from Construction focus to Operations (ITS.CV/AV)
- ✓ Uncertainty regarding CV timing (OBUs)
- ✓ Infrastructure (RSUs) provision public vs private
- ✓ Pilot testing, learning, and no regrets early deployment
- ✓ Business Case vs DOT resources/capabilities

State regulatory focus


- ✓ Technology Choice/Spectrum Allocation
- ✓ Information Security/privacy/liability
- ✓ Data Ownership

Connected Vehicle Program in FL

Planning for Connected Vehicles - Metro

- Impact on travel demand, trip length and VMT
 - √ Ride hailing/car sharing
 - Demand vs (reallocated) capacity impacts: congestion?
- New transit modes/MaaS Impact on traffic/transit?
- Land-use / urban design
 - ✓ Impact of trip length on suburbs
 - ✓ Central area urban design parking, shared sts., curb space, MaaS
- New data sources Track and update
- Analytics, models and staff capability development

Steve Lockwood, LLC